

Management of Lymphoma of the Central Nervous System

Nicolas Martinez-Calle MD, PhD

Consultant Haematologist, Nottingham University Hospitals

n.martinez-calle@nhs.net

DISCLOSURES

No conflicts of interest to declare

AGENDA

Primary CNS lymphoma

CNS prophylaxis in DLBCL

Secondary CNS lymphoma

PCNSL - epidemiology

Rising incidence

- ~4 per million/year in Europe
- 4.8 per million/year in US
 - Not solely explained by improved diagnostics

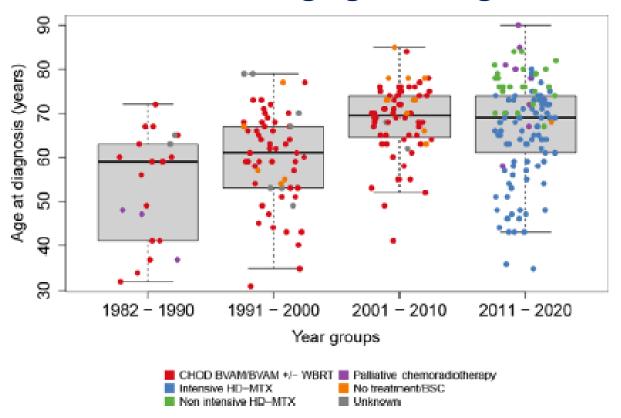
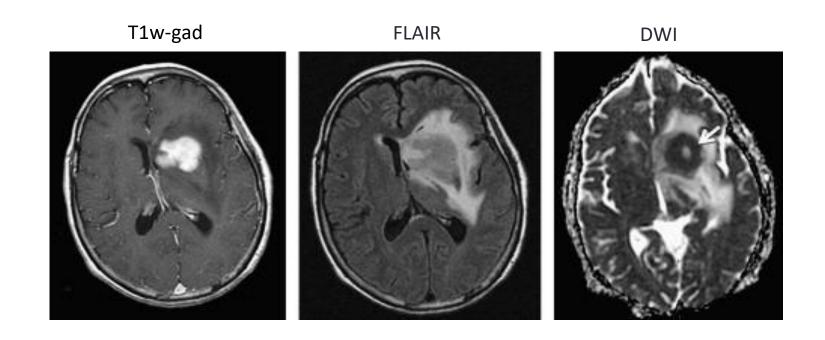
2-5% of brain tumours / 2% of all extra-nodal NHL

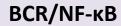
Immunocompetent patients

Median age at diagnosis >60yrs

- Median age in recent large French study = 68 years
- Median age at diagnosis in East Midlands, UK = 70 years

PCNSL – increasing age at diagnosis


Fig 2. Box plots depicting distribution of ages within the period studied, divided by year groups. Individual data points are displayed by treatment type. Palliative chemoradiotherapy refers to the use of temozolomide (TMZ) + dexamethasone, TMZ + whole brain radiotherapy (WBRT), TMZ + rituximab (R), or the use of WBRT alone. BSC, best supportive care. [Colour figure can be viewed at wileyon linelibrary.com]

Particular considerations in PCNSL

- Unique clinical sequelae of this aggressive lymphoma entity
- Challenges with drug delivery to the CNS
- Surrounding brain tissue is highly vulnerable to treatment toxicities

Biology of PCNSL

MYD88 (30-80%) CD79B (30-88%) CARD11 TNFAIP3

Immune escape

CIITA B2M **HLA loss** PDL1/PDL2 gain CD58

Epigenetic modifiers & **Transcription**

KMT2D **CREBBP** MEF2B TBXL1R1 (30%) HIST1H1E

Cell cycle

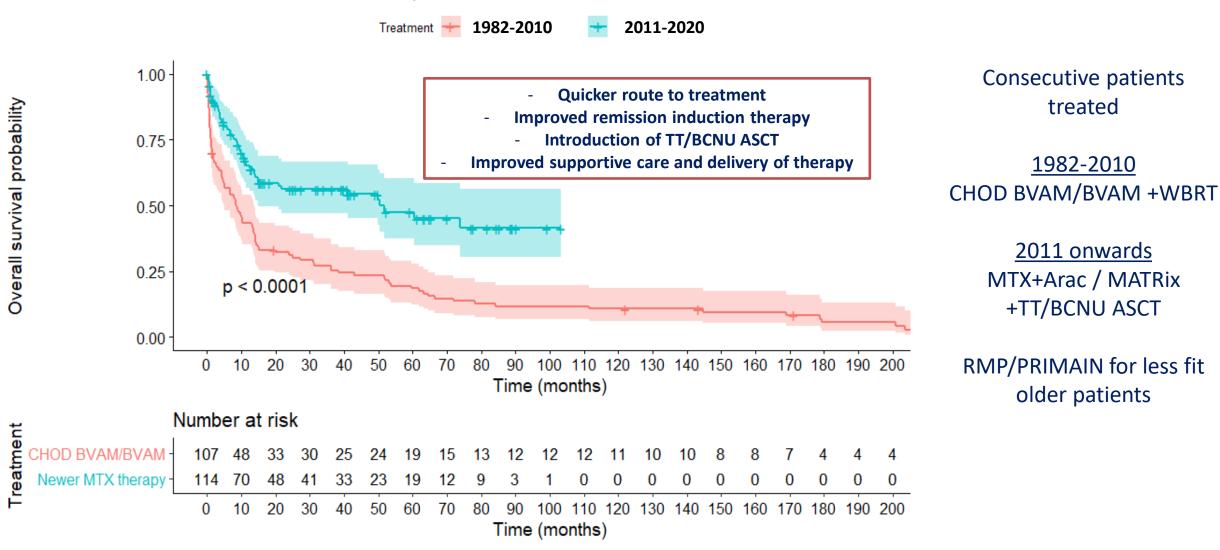
TP53 CDKN2A

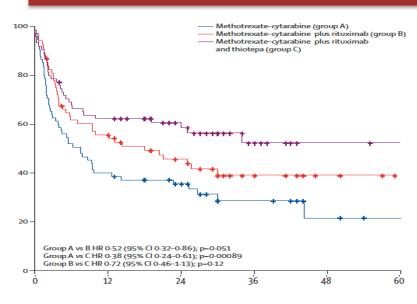
aSHM

PIM1 (30-100%) BTG2 BTG1 IGLL5

ARTICLE https://doi.org/10.1038/s41467-022-30050-y

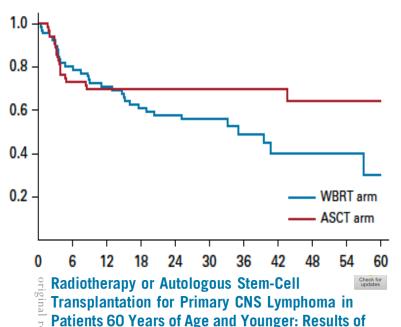
The genomic and transcriptional landscape of primary central nervous system lymphoma


Radke et al. Nat Comm, 2022


Population-based survival data – era by era analysis from Nottingham, UK

Overall survival for PCNSL patients - CHOD BVAM/BVAM vs. Newer MTX

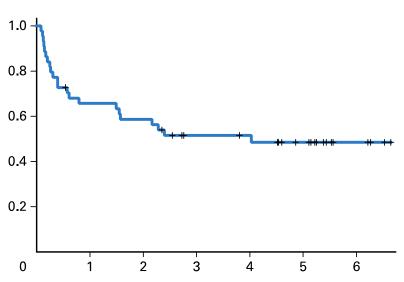
Treatment paradigm for PCNSL


A 'two-phase' treatment strategy (remission induction & consolidation) is widely adopted internationally

Chemoimmunotherapy with methotrexate, cytarabine, thiotepa, and rituximab (MATRix regimen) in patients with primary CNS lymphoma: results of the first randomisation of the International Extranodal Lymphoma Study Group-32 (IELSG32) phase 2 trial

Andrés J M Ferreri, Kate Cwynarski, Elisa Pul czynski, Maurilio Ponzoni, Martina Deckert, Letterio S Politi, Valter Torri, Christopher P Fox, Paul La Rosée, Elisabeth Schorb, Achille Ambrosetti, Alexander Roth, Claire Hemmaway, Angela Ferrari, Kim M Linton, Roberta Ruda, Mascha Binder, Tobias Putrop, Monica Balzarotti, Alberto Fabbri, Peter Johnson, Jette Sønderskov Gørløv, Georg Hess, Jense Pansee, Francesco Pisani, Alessandra Tucci, Stephan Stilgenbauer, Bemd Hertenstein, Ulrich Keller, Stefan W Krause, Alessandro Levis, Hans J Schmoll, Franco Cavalli, Jürgen Finke, Michele Reni, Emanuele Zucca, Gerald Illerhaus, for the International Extranodal Lymphoma Study Group (ELSG)*

Ferreri et al Lancet Haematology 2016

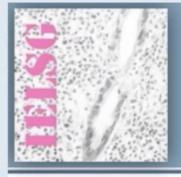


Caroline Houillier, MD¹; Luc Taillandier, PhD²; Sylvain Dureau, PharmD³; Thiery Lamy, MD, PhD²; Mouna Laadhari, MD³; Olivier Chinich, MD, PhD²; Cecli Molico, PhD²; Sylvain Dureau, MD³; Phrain MD, PhD³; Cecli Molico, PhD³; Marie Choquet, MD³; Gandhi Damaj, MD, PhD³; Antoine Tiyes, MD³; Julie Abraham, MD³; Vincent Delwai, MD³; Emmanuel Gyan, MD, PhD³; Laurence Sanhes, MD³; Jerôme Cornillon, MD, PhD³; Reda Gardid, MD³; Alain Delmer, MD, PhD³; Marie-Laure Tanguy, PharmDl³, Ahmad Al Jijakil, MD³; Piere Morel, MD³; Pascal Bourquard, MD³; Marie-Pierre Moles, MD³; Arien-Charer Moles, MD³; Article Chauchet, MD³; Thomas Gastrine, MD³; Jean-Marc Constans, MD, PhD³; Adriana Langer, MD³; Antoine Martin, MD, PhD³; Pharie Martin-Dureneum, MD³; Damien Read, MD, PhD³; Alsbeit Turbles, Lisbell Tur

the Intergroup ANOCEF-GOELAMS Randomized

Phase II PRECIS Study

Hoillier et al JCO 2019

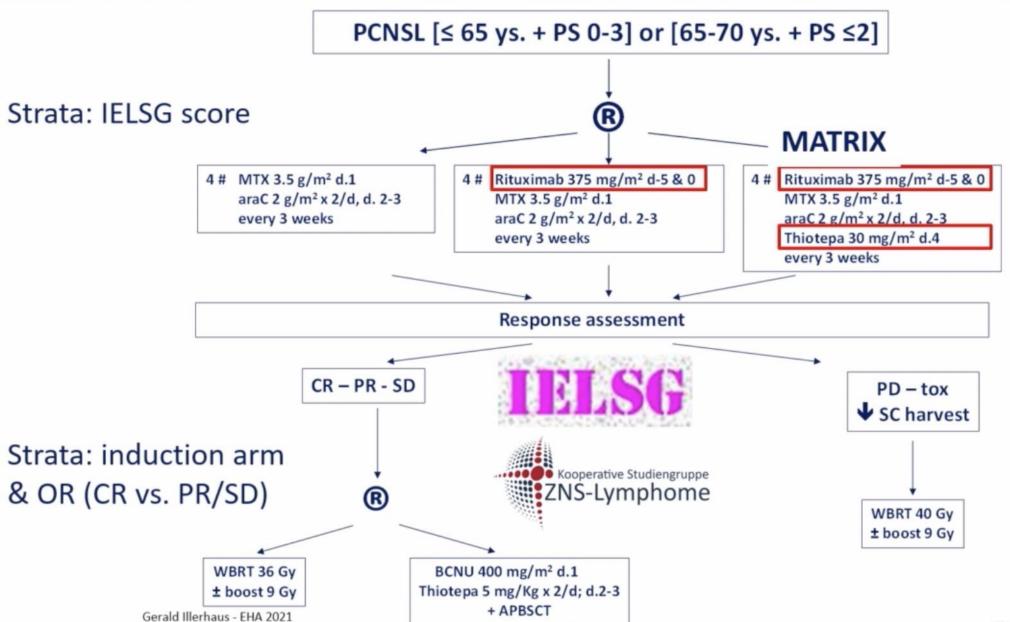

Intensive Chemotherapy and Immunotherapy in Patients With Newly Diagnosed Primary CNS Lymphoma: CALGB 50202 (Alliance 50202)

James L. Rubenstein, Eric D. Hsi, Jeffrey L. Johnson, Sin-Ho Jung, Megan O. Nakashima, Barbara Grant, Bruce D. Cheson, and Lawrence D. Kaplan

Rubenstein et al JCO 2013

Choice of treatment

Fit for HD-MTX, no ASCT **Unfit for intensive chemo* Intensive treatment WBRT** * ECOG, renal function, LVEF R-TMZ **MATRIX** -> ASCT **PCZ** R-MP R-MTX/AraC -> ASCT **RMVP-A WBRT** R-MBVP -> AraC **BSC** R-TMZ PCZ MTR -> RT or MTR -> RT **WBRT WBRT HD AraC/Etoposide BSC**



MATRix followed by autologous transplant is associated with excellent survival and Neurotolerability in Primary CNS Lymphoma: Resulty of the IELSG32 Trial at a median Follow-up of 88 Months

G. Illerhaus, K. Cwynarski, E. Pulczynski, C.P. Fox, E. Schorb, P. C. Celico, M. Falautano, A. Nonis, La Rosée, M. Binder, A. Fabbri, F. Ilariucci, A. Ambrosetti, A. Roth, C. Hemmaway, P. Johnson, K. Linton, T. Pukrop, J. Sonderskov Gorlov, M. Balzarotti, G. Hess, U. Keller, S. Stilgenbauer, J. Panse, A. Tucci, L. Orsucci, F. Pisani, A. Levis, S. Krause, H.J. Schmoll, B. Hertenstein, M. Rummel, J. Smith, M. Pfreundschuh, G. Cabras, F. Angrilli, M. Ponzoni, M. Deckert, L.S. Politi, J. Finke, K. Cozen, E. Burger, N. Ielmini, F. Cavalli, E. Zucca, A.J.M. Ferreri

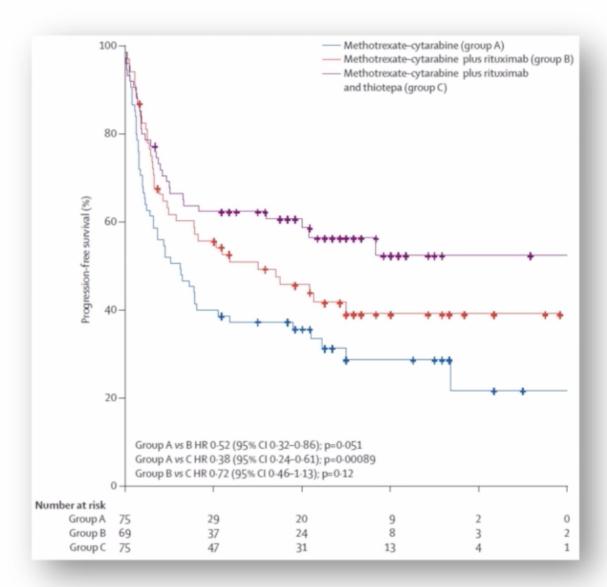
IELSG32 Trial

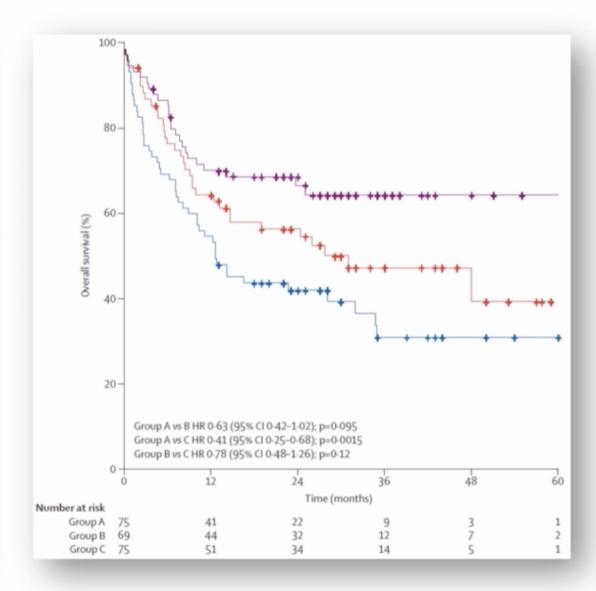
IELSG32 Initial publications

2016 2017

Chemoimmunotherapy with methotrexate, cytarabine, thiotepa, and rituximab (MATRix regimen) in patients with primary CNS lymphoma: results of the first randomisation of the International Extranodal Lymphoma Study Group-32 (IELSG32) phase 2 trial

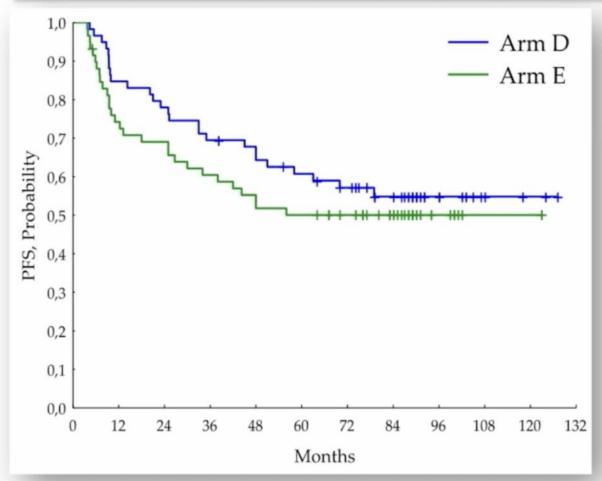
Andrés J M Ferreri, Kate Cwynarski, Elisa Pulczynski, Maurilio Ponzoni, Martina Deckert, Letterio S Politi, Valter Torri, Christopher P Fox,
Paul La Rosée, Elisabeth Schorb, Achille Ambrosetti, Alexander Roth, Claire Hemmaway, Angela Ferrari, Kim M Linton, Roberta Rudà,
Mascha Binder, Tobias Pukrop, Monica Balzarotti, Alberto Fabbri, Peter Johnson, Jette Sønderskov Gørløv, Georg Hess, Jens Panse,
Francesco Pisani, Alessandra Tucci, Stephan Stilgenbauer, Bernd Hertenstein, Ulrich Keller, Stefan W Krause, Alessandro Levis, Hans J Schmoll,
Franco Cavalli, Jürgen Finke, Michele Reni, Emanuele Zucca, Gerald Illerhaus, for the International Extranodal Lymphoma Study Group (IELSG)*

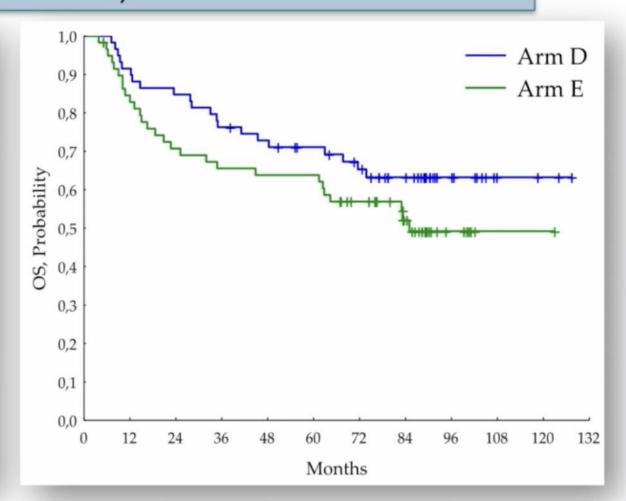

Ferreri et al, Lancet Hematology 2016


Whole-brain radiotherapy or autologous stem-cell transplantation as consolidation strategies after high-dose methotrexate-based chemoimmunotherapy in patients with primary CNS lymphoma: results of the second randomisation of the International Extranodal Lymphoma Study Group-32 phase 2 trial

Andrés J M Ferreri, Kate Cwynarski, Elisa Pulczynski, Christopher P Fox, Elisabeth Schorb, Paul La Rosée, Mascha Binder, Alberto Fabbri, Valter Torri, Eleonora Minacapelli, Monica Falautano, Fiorella llariucci, Achille Ambrosetti, Alexander Roth, Claire Hemmaway, Peter Johnson, Kim M Linton, Tobias Pukrop, Jette Sonderskov Gerlev, Monica Balzarotti, Georg Hess, Ulrich Keller, Stephan Stilgenbauer, Jens Panse, Alessandra Tucci, Lorella Orsucci, Francesco Pisani, Alessandro Levis, Stefan W Krause, Hans J Schmoll, Bernd Hertenstein, Mathias Rummel, Jeffery Smith, Michael Pfreundschuh, Giuseppina Cabras, Francesco Angrilli, Maurilio Ponzoni, Martina Deckert, Letterio S Politi, Jürgen Finke, Michael Reni, Franco Cavalli, Emanuele Zucca, Gerald Illerhaus, for the International Extranodal Lymphoma Study Group (IELSG)

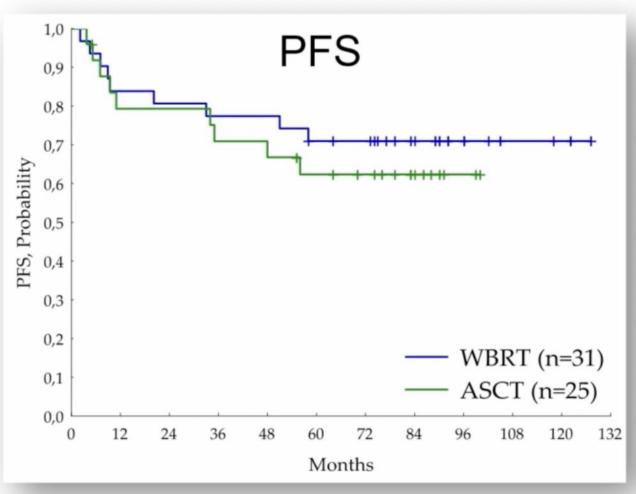
Ferreri et al, Lancet Hematology 2017

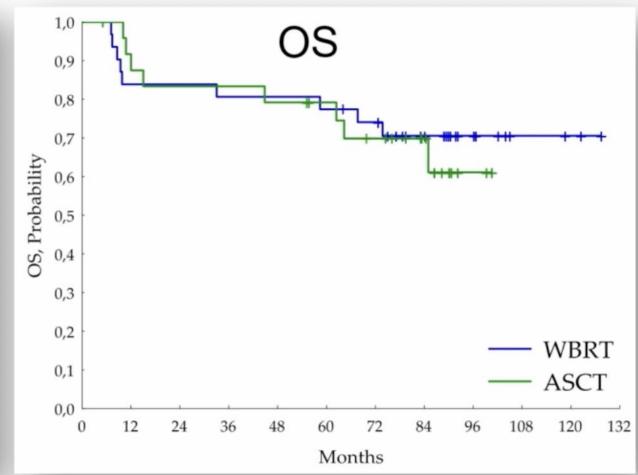

1st Randomization: Arms Activity



CONSOLIDATION

MEDIAN FOLLOW-UP: 88 MONTHS (IQR 77-99)




	HR	95%CI	р
D vs. E	1.15	0.78 - 1.68	0.46

	HR	95%CI	р
D vs. E	1.25	0.84 - 1.88	0.26

Consolidation After MATRix

Pts treated with MATRix and consolidation had a 7-yr OS of 70%, without a difference between WBRT and ASCT.

IELSG32: dose intensity of MATRIX

research paper

Induction therapy with the MATRix regimen in patients with newly diagnosed primary diffuse large B-cell lymphoma of the central nervous system – an international study of feasibility and efficacy in routine clinical practice

Elisabeth Schorb,1 (D) Christopher P. Fox,2 Benjamin Kasenda,3,4 Kim Linton,5 Nicolas Martinez-Calle,2 Teresa Calimeri,⁶ Slavisa Ninkovic,⁷ (D) Toby A. Eyre, 8 (D) Tom Cummin, 9 Jeffery Marco, 12 Mauro Krampera, 12 Stefan Trefz,3 Lorella Orsucci,13 Alberto Fabbri. 14 Gerald Illerhaus, 3 Kate Cwynarski7,† and Andrés J. M. Ferreri6,†

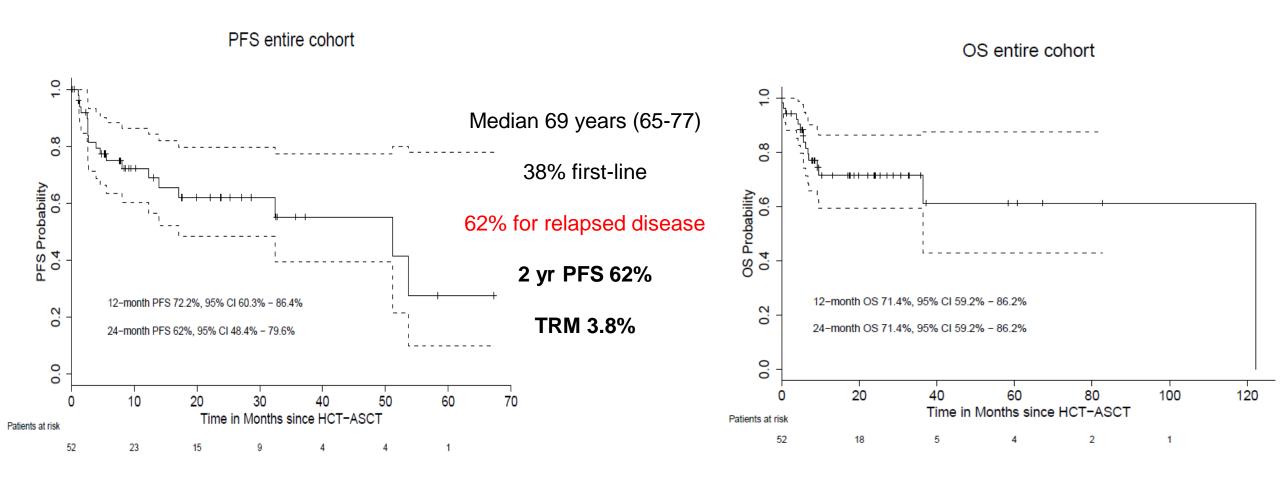
The MATRix chemoimmunotherapy regimen is highly effective in patients with newly diagnosed primary diffuse large B-cell lymphoma of the central nervous system (PCNSL). However, nothing is known about its feasibility Smith, 10 Deborah Yallop, 11 Beatrice De and efficacy in everyday practice, where patients are more often older/frailer than those enrolled in clinical trials. We conducted a retrospective study addressing tolerability/efficacy of MATRix in 156 consecutive patients with newly diagnosed PCNSL treated outside a clinical trial. Median age and ECOG Performance Status of considered patients were 62 years (range 28-

Schorb et al, BJH, 2020

Delivery of 4 cycles in 62% of patients (3-4 in 75%)

Cycle 1	Inclusion criteria fulfilled (n = 110)	Inclusion criteria not fulfilled $(n = 46)$	All (n = 156)	P value
Patients with dose reduced 25% or more	28 (25·5)	35 (76-1)	63 (40·4)	0.001
Cycle 2	Inclusion criteria fulfilled (n = 96)	Inclusion criteria not fulfilled $(n = 40)$	All (n = 136)	P value
Patients with dose reduced 25% or more	41 (42.7)	26 (65-0)	67 (49·3)	0.02918
Cycle 3	Inclusion criteria fulfilled ($n = 88$)	Inclusion criteria not fulfilled ($n = 28$)	All (n = 116)	P value
Patients with dose reduced 25% or more	37 (42-0)	17 (60-7)	54 (46-6)	0-1317
Cycle 4	Inclusion criteria fulfilled ($n = 75$)	Inclusion criteria not fulfilled ($n = 22$)	All (n = 97)	P value
Patients with dose reduced 25% or more	34 (45·3)	14 (63-6)	48 (49-5)	0-205

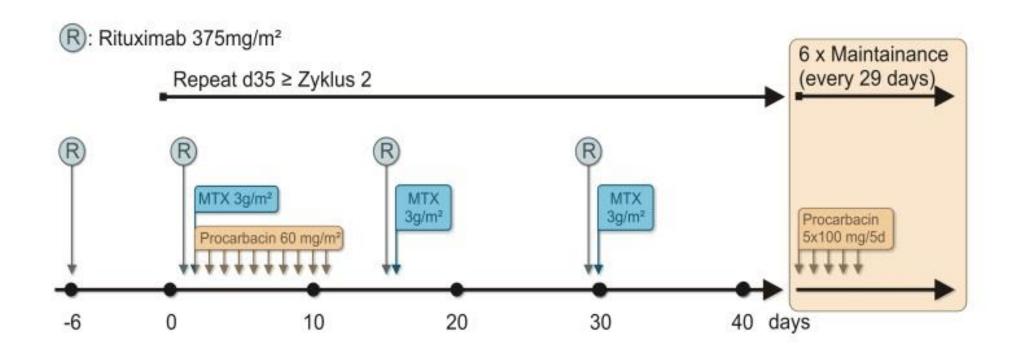
Numbers are frequencies (column percentages).


How we treat...

- Delivery of MTX is key (Cummulative dose + schedule)
- Biggest issue is haematological toxicity + neutropenic sepsis (MTX not implicated)

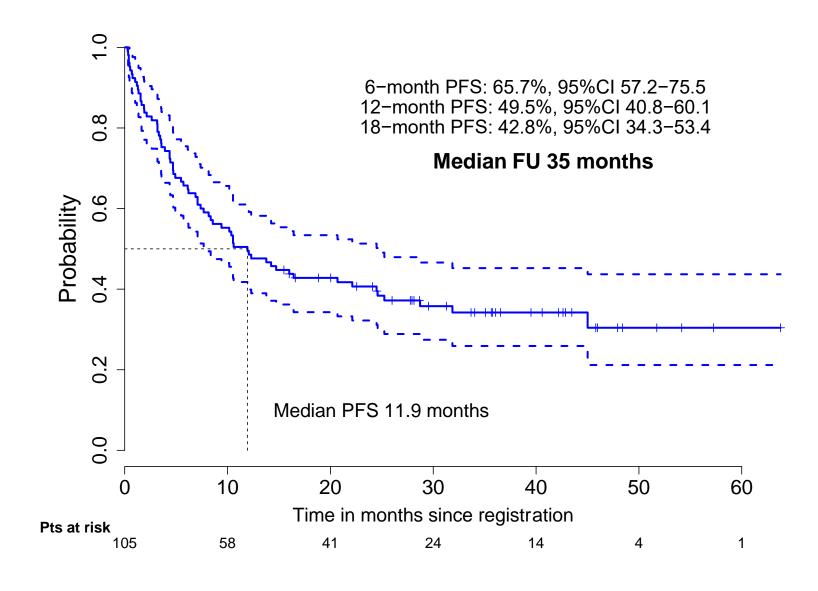
Dose intensity is tailored by modifying AraC doses (agent with highest Haem Tox) -> Thiotepa Admission for neutropenic care

Age limit for HD-ASCT consolidation


IELSG32 Below 65y PS 1-3 65-70y PS1

German PRIMAIN protocol (older, HDT-ineligible patients)

From Gerard Illerhaus

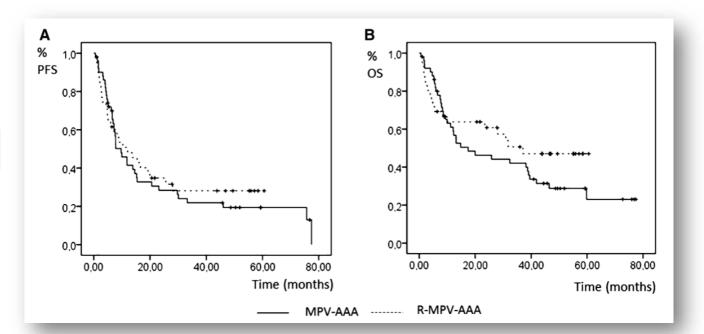


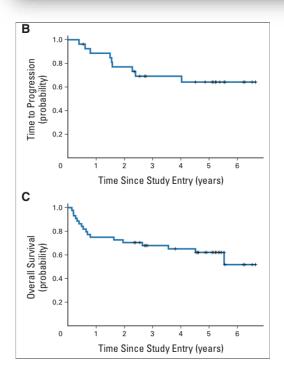
Median age 75yrs (65-83)

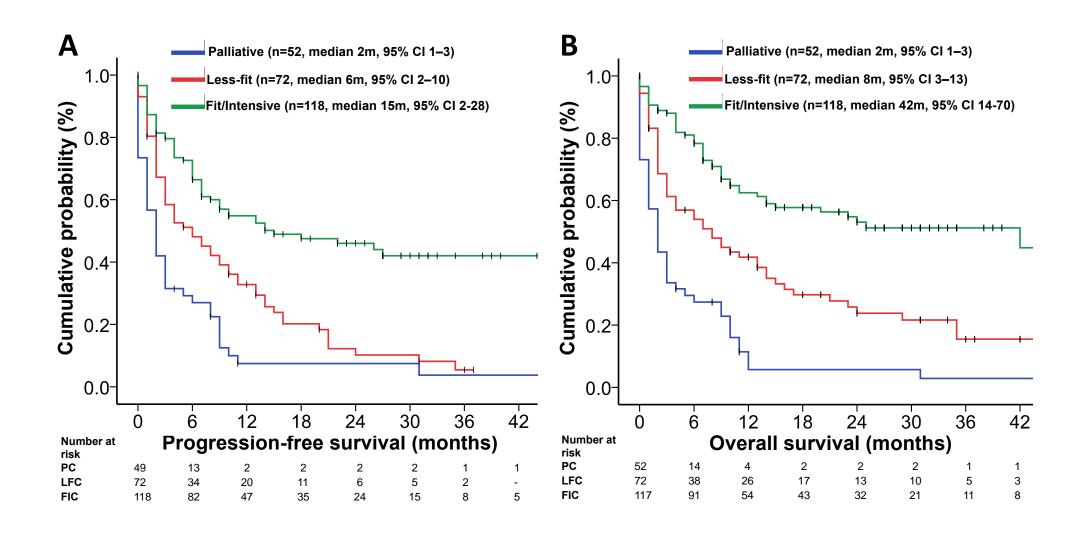
German PRIMAIN protocol (older, HDT-ineligible patients)

Houillier et al, Neuro Oncology, 2017

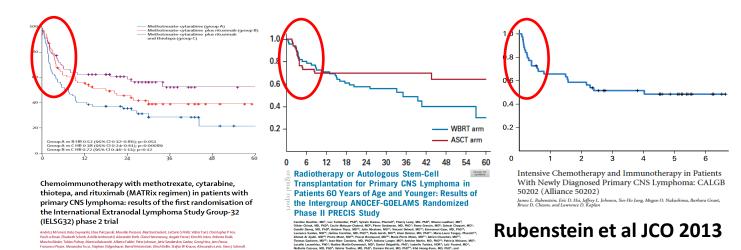
MVP x3 -> AraC x3


Median age 68 CR rate 55% 40% discontinued (PD or death) Median PFS 10m, 4-yr PFS 22% Pts Above 60y

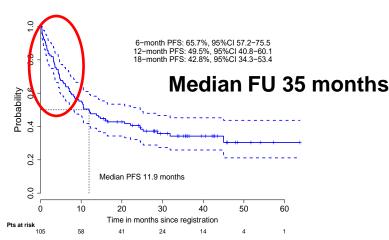



R + MTX 8gr/m2 x7 -> Etoposide/AraC

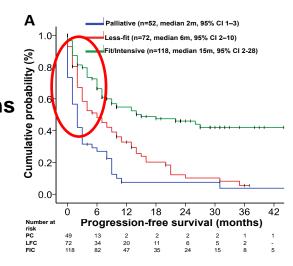
Median Age 61, Max 76 CR rate (66% CR after MTR, 55% 20% discontinued PD Median PFS 2.4Yr, 2-yr 57% Any age PS 1-2



UK real-world study >65 years PCNSL



Early treatment failure despite modern intensive PCNSL therapy


Ferreri et al Lancet

Haematology 2016

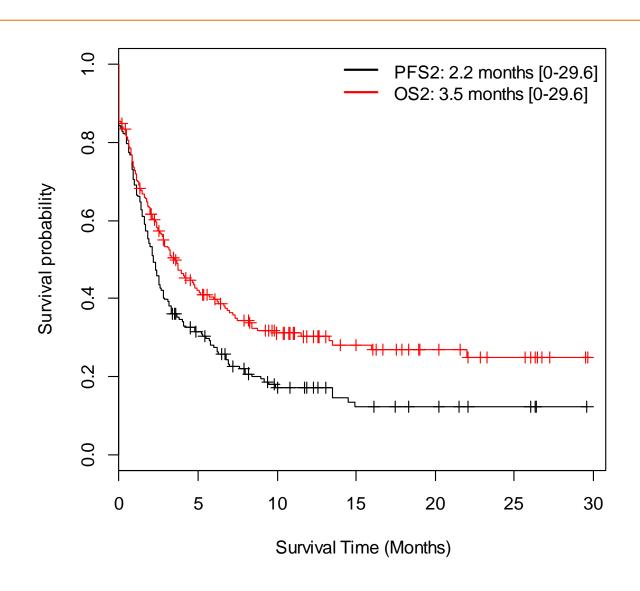
Fritsch K et al Leukemia 2011

Hoillier et al JCO 2019

Martinez-Calle et al – BJHaem 2020

Early treatment failure despite modern intensive PCNSL therapy

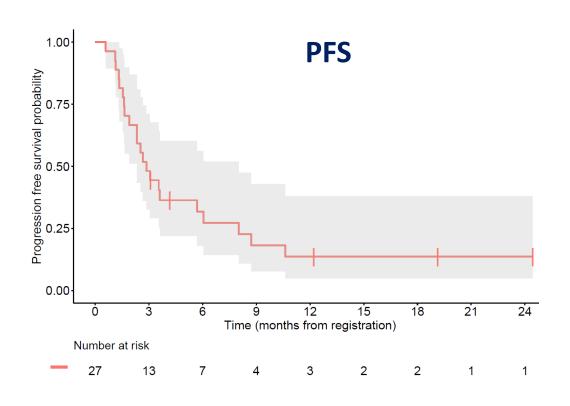
The majority (70%) of deaths in IELSG32 (≡ other PCNSL studies) were due to lymphoma

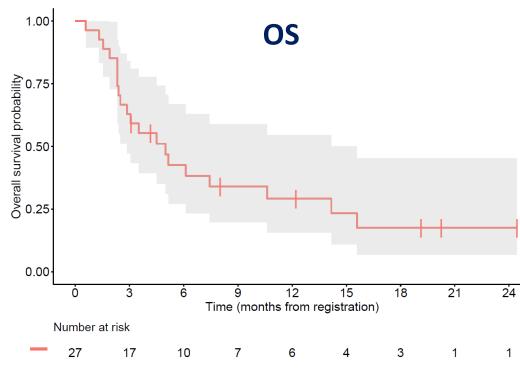

1. Failure of remission induction

- High ORR with MATRix, yet significant rates of early treatment failure
- 62% of MATRix arm proceeded to consolidation
 - TRM and lymphoma progression
 - Outcomes may vary according to clinician/centre experience

2. Early relapses after consolidation

- ~20% of patients
- Difficult to predict -> Advanced MR techniques
- Achieving a second durable remission very challenging
- Consolidation questions being investigated in two active RCTs
 - MATRix/IELSG43 and Alliance NCT01511562


Relapsed & refractory PCNSL – French population-based data



TIER

TIER phase I/II study for r/r PCNSL

- Median PFS = 2.9 months (95% CI 2.34, 8.02)
- Median OS = 5 month (95% CI 2.86, 15.58)

New agents in development for PCNSL

BTK inhibitors

- MYD88 and CD79 mutations very common in PCNSL
- Ibrutinib crosses BBB in meaningful concentrations
- High responses to ibrutinib but short PFS

IMIDs/PPMs

- Evidence of Lenalidomide activity in PCNSL in early phase studies
 - Parenchymal and CSF responses
- T cell compartment (CD4: CD8 ratio) may be important
- Role in the maintenance setting under evaluation in older patients

Checkpoint inhibition

- PD1 disruption common in PCNSL (copy number gain or rearrangement)
- (very) preliminary evidence of clinical activity with Nivolumab
- Global phase 2 trial results awaited..

CNS Prophylaxis for High-grade B-NHL

The matter of CNS prophylaxis in DLBCL

An estimated risk 3-4% of CNS relapse is generally accepted for DLBCL across all risk groups.

9-10% for High-risk group (CNS-IPI 4-6), 15%-18% for CNS-IPI 5-6 + high-risk sites included

Variable practice: Use of HD-MTX +/- IT MTX (Health care resources)

Retrospective data has set doubts on HD-MTX efficacy

Risk stratification is far from ideal (CNS-IPI, Schmitz et al)

- Not on rituximab and PET era
- Selection bias: True denominator of high-risk patients remains unknown

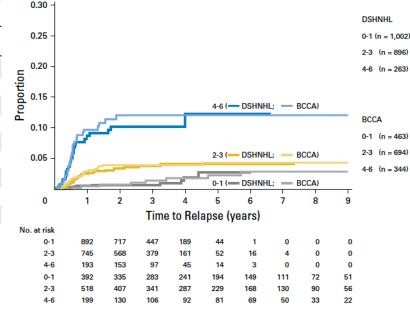
The matter of CNS prophylaxis

Imperfect risk stratification

CNS International Prognostic Index: A Risk Model for CNS Relapse in Patients With Diffuse Large B-Cell Lymphoma Treated With R-CHOP

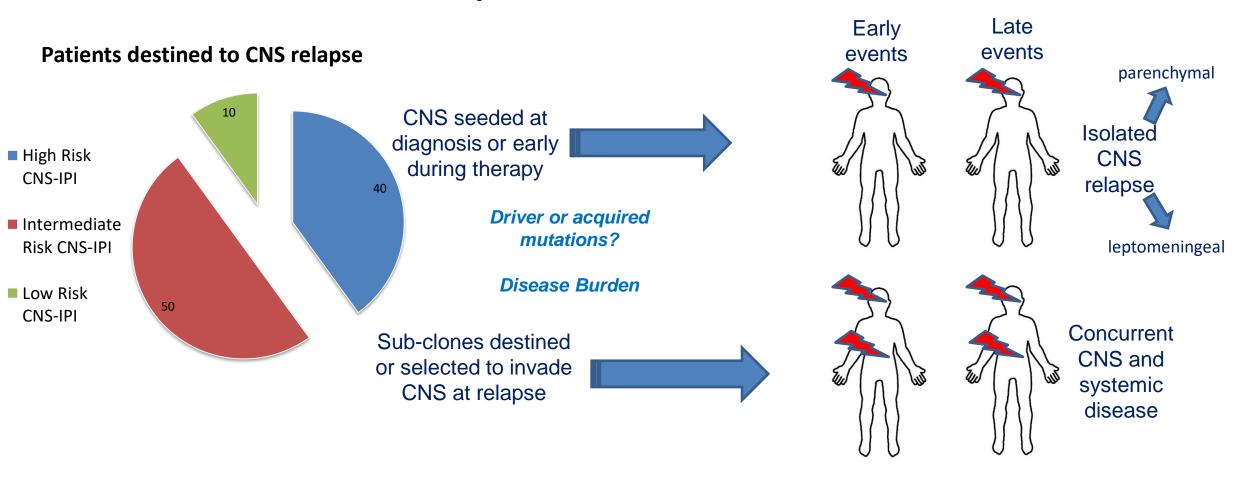
~1 in 5 patients fall into the high-risk group by CNS-IPI. CT staging: NB EN sites & renal/adrenal underestimated

Norbert Schmitz, Samira Zeynalova, Maike Nickelsen, Roopesh Kansara, Diego Villa, Laurie H. Sehn, Bertram Glass, David W. Scott, Randy D. Gascoyne, Joseph M. Connors, Marita Ziepert, Michael Pfreundschuh, Markus Loeffler, and Kerry J. Savage


J Clin Oncol 34:3150-3156. @ 2016 by American Society of Clinical Oncology

ı	Table 1. Major Clinical Characteristics of Patients Representing the Training Set (German High-Grade Non-Hodgkin Lymphoma Study
ı	Trial) and the Validation Set (British Columbia Cancer Agency)

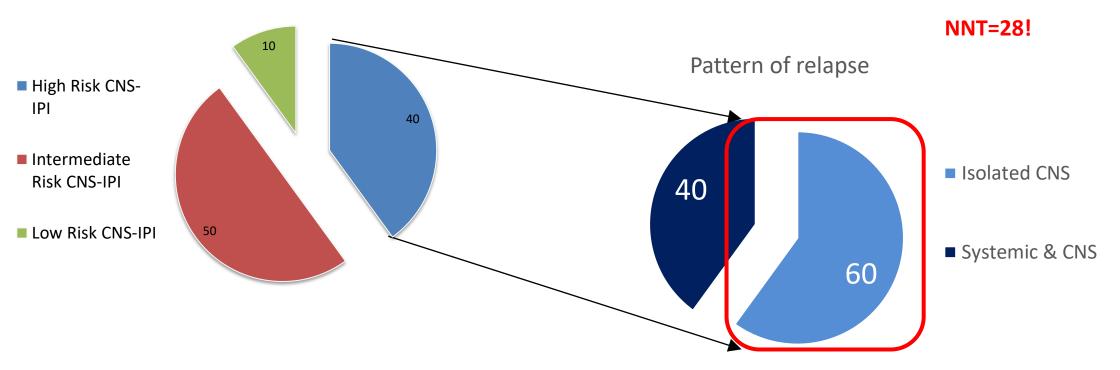
	Trial) and the Validation Set (British Columbia Cancer Agency)		
Cohort Characteristic	DSHNHL/MInT, n = 2,164 (%)	BCCA, n = 1,597 (%	
Age, years, median (range)	58 (18-80)	65 (16-94)	
Age > 60 years	974 (45)	1,035 (65)	
Male	1,244 (58)	915 (57)	
LDH > normal*	1,147 (53)	737 (49)	
ECOG PS > 1	247 (11)	584 (37)	
Stage III/IV disease	1,148 (53)	916 (57)	
Extranodal site > 1	479 (22)	396 (25)	
Bulky disease, > 7 cm*	1,027 (48)	636 (41)	
Kidney/adrenal glands	90 (4)	56 (4)	
IPI score*			
0, 1	1,009 (47)	463 (31)	
2	523 (24)	359 (23)	
3	398 (18)	350 (23)	
4, 5	231 (11)	329 (22)	
CNS-IPI score 4-6	263 (12 3%)	344 (23%)	


CN3-IPI SCOTE 4-0 203 (12.3%) 344 (23%)

CNS-IPI score 5-6 75 (3.4%)

The matter of CNS prophylaxis

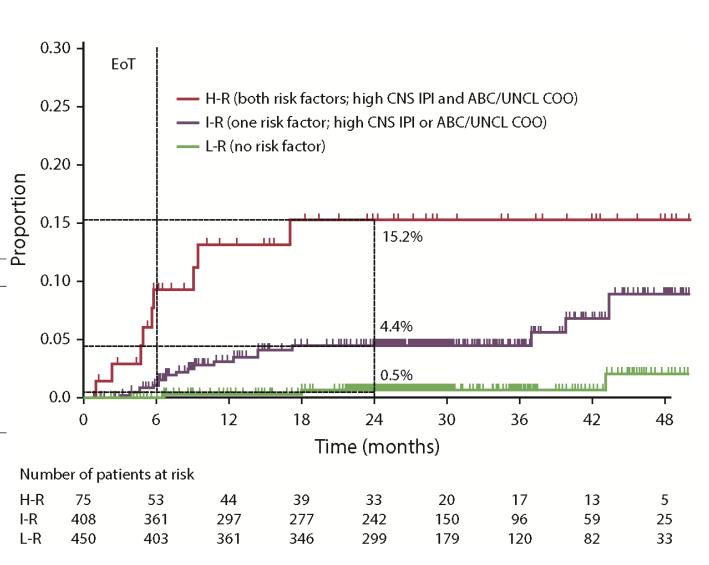
Imperfect risk stratification


The matter of CNS prophylaxis

10000 DLBCL patients (1100 High-risk)

300 CNS relapse events (120 High-risk, 150 Int-risk, 30 Low-risk)

72 Isolated CNS relapses (7% of High-risk)



Number of relapses higher in Intermediate-risk group -> No prophylaxis
PPV of High-Risk CNS-IPI is 7% for parenchymal relapse -> NNT
No studies segregate by systemic/isolated CNS relapse

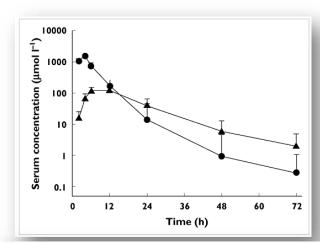
Can CNS-IPI be improved?

Table 4. Results of multivariate Cox regression analysis on factors associated with CNS relapse in the COO and BCL2/MYC dual-expression status-available population (n = 688), CNS relapses (n = 22)

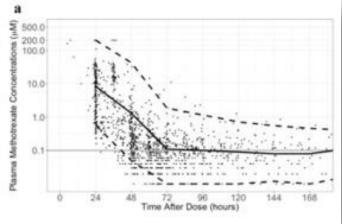
Factor	HR*	95% CI	<i>P</i> value
CNS-IPI intermediate (v low)	0.75	0.23□2.45	.6378
CNS-IPI high (v low)	2.76	0.81□9.42	.1042
ABC COO (v GCB)	4.78	1.49 15.29	.0084
Unclassified COO (v GCB)	4.24	1.32 13.61	.0151
BCL2/MYC dual expresser (v non-dual expresser)	0.83	0.34□2.06	.6931

How to give CNS prophylaxis

HD-MTX


- At least 2 doses of HD-MTX (3gr/m2 or above)
- Rapid infusion MTX 2-4h

good practice papers


The prevention of central nervous system relapse in diffuse large B-cell lymphoma: a British Society for Haematology good practice paper

Pamela McKay, 1 D Matthew R. Wilson, 1 D Sridhar Chaganti, 2Jeffery Smith, 3Christopher P. Fox, 4.5 and Kate Cwynarski 6 on behalf of the British Society of Haematology

¹Department of Haematology, Beatson West of Scotland Cancer Centre, ²Department of Haematology, Queen Elizabeth Hospital, Birmingham, ³Department of Haematology, Aintree University Hospital, Liverpool, ⁴Department of Clinical Haematology, Nottingham University Hospitals NHS Trust, Nottingham, ⁵Division of Cancer and Stem Cells, University of Nottingham, Nottingham, and ⁶Department of Haematology, University College Hospital, London, UK

Rapid Infusion

24-h infusion

Holmboe *et al*, BJCP, 2011 Kawatkatsu et al, Canc Chemother Pharmacol, 2019

How to give CNS prophylaxis

Intrathecal chemotherapy

Prophylaxis with intrathecal or high-dose methotrexate in diffuse large B-cell lymphoma and high risk of CNS relapse

Sabela Bobillo^{1,2,3}, Erel Joffe of David Sermer, Patrizia Mondello of Paul A. Hamlin^{1,4}, Steven M. Horwitz^{1,4}, Anita Kumar, Matthew J. Matasar, Connie L. Batlevi of A. Alison Moskowitz, Ariela Noy of M. Collette N. Owens, M. Lia Palomba of M. David Straus, Gottfried von Keudell, Ahmet Dogan of Andrew D. Zelenetz, Venkatraman E. Seshan of and Anas Younes of Matasar, Andrew D. Zelenetz, Venkatraman E. Seshan of Andrew D. Zelenetz, Venk

bih good practice papers

The prevention of central nervous system relapse in diffuse large B-cell lymphoma: a British Society for Haematology good practice paper

Pamela McKay, 1 (ii) Matthew R. Wilson, 1 (iii) Sridhar Chaganti, 2 Jeffery Smith, 3 Christopher P. Fox, 4.5 and Kate Cwynarski 6 on behalf of the British Society of Haematology

¹Department of Haematology, Beatson West of Scotland Cancer Centre, ²Department of Haematology, Queen Elizabeth Hospital, Birmingham, ³Department of Haematology, Aintree University Hospital, Liverpool, ⁴Department of Clinical Haematology, Nottingham University Hospitals NHS Trust, Nottingham, ⁵Division of Cancer and Stem Cells, University of Nottingham, Nottingham, and ⁶Department of Haematology, University College Hospital, London, UK

N=2002 (585 High Risk)

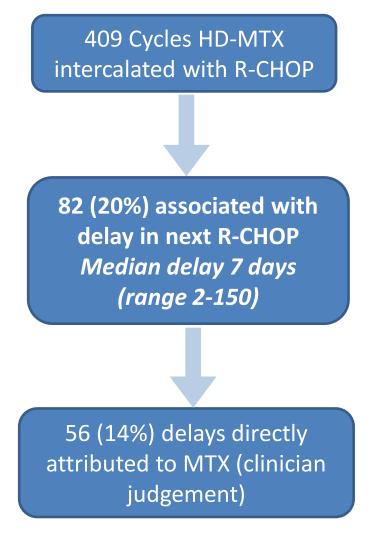
N	CNS events (5y)
290/50% (No prophylaxis)	7.1%
253/43% (IT prophylaxis)	5.6%
42/7% (HD-MTX)	5.2%

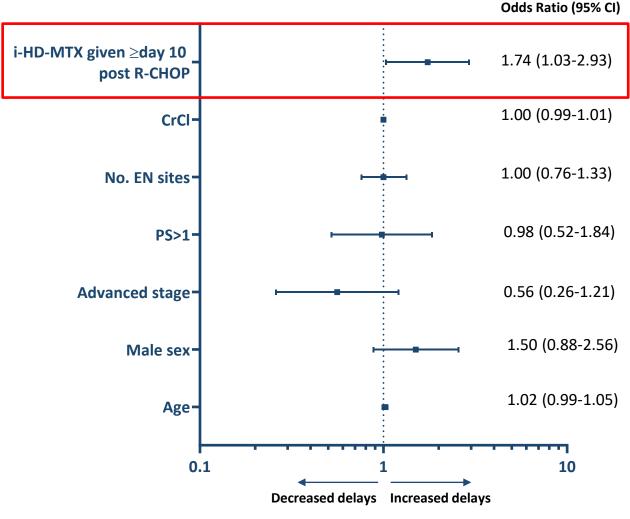
Research Paper | 🙃 Free Access

Stand-alone intrathecal central nervous system (CNS) prophylaxis provide unclear benefit in reducing CNS relapse risk in elderly DLBCL patients treated with R-CHOP and is associated increased infection-related toxicity

Toby A. Eyre X, Amy A. Kirkwood, Julia Wolf, Catherine Hildyard, Carolyn Mercer, Hannah Plaschkes, John Griffith, Paul Fields, Arief Gunawan, Rebecca Oliver, Stephen Booth, Nicolas Martinez-Calle, Andrew McMillan, Mark Bishton, Christopher P. Fox, Graham P. Collins, Chris S. R. Hatton

First published: 20 June 2019 | https://doi.org/10.1111/bjh.16070 | Citations: 23

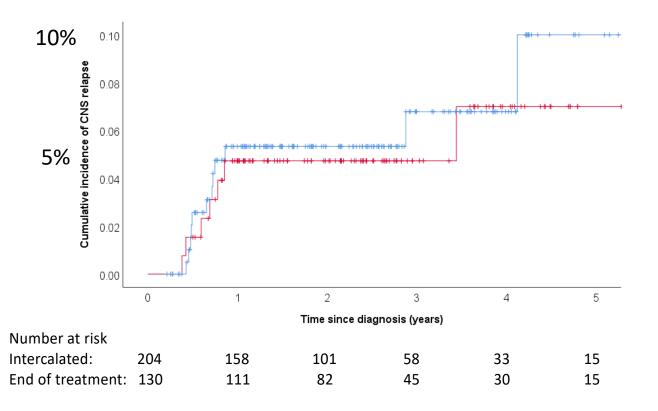

N=690 (277 High Risk)


N	CNS events (5y)
559/81% (No prophylaxis)	2.7%
99/14% (IT prophylaxis)	5.5%
31/4.4% (HD-MTX)	3.9%

*aHR for IT prophylaxis: 1.34 (0.8 – 5.5)

When to give HD-MTX prophylaxis

N=1324



Multivariable analysis: factors influencing delay of R-CHOP after intercalated HD-MTX

When to give HD-MTX prophylaxis

	All (n=729)	Intercalated (n=409)	End of treatment (n=320)	P value
Number inpatient days (median, range)	5 (2-60)	5 (2-60)	4 (3-80)	<0.001
Toxicity:				
Renal (any)	38 (5%)	21 (5%)	17 (5%)	0.92
Grade 1 (Creat 1.5-1.9 x baseline)	22 (3%)	12 (3%)	10 (3%)	
Grade 2 (Creat 2-2.9 x baseline)	6 (1%)	3 (1%)	3 (1%)	
Grade 3 (Creat >3 x baseline)	10 (1%)	6 (1%)	4 (1%)	
Liver (grade 2 or worse)	17 (2%)	7 (2%)	10 (3%)	0.21
Mucositis	54 (7%)	42 (10%)	12 (4%)	0.001
Neutropenic fever	49 (7%)	42 (10%)	7 (2%)	<0.001

When to give HD-MTX prophylaxis

Group	CNS relapses	3 year cumulative incidence	95% CI	P-value	
All (n=334)	19 (5.7%)	5.9%	3.0-8.8		
Intercalated (n=204)	12 (5.9%)	6.8%	2.9-10.7	0.60	
EOT (n=130)	7 (5.4%)	4.7%	1.0-8.4	0.69	

No benefit if IT MTX

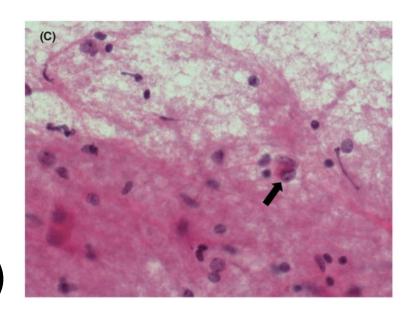
3-yr rate 4.4% no IT / 5.2% for IT MTX.

Secondary CNS lymphoma

DOI: 10.1111/bjh.18128

REVIEW

Rare central nervous system lymphomas


Furqaan Ahmed Kaji¹ | Nicolás Martinez-Calle¹ | Vishakha Sovani² | Christopher Paul Fox¹ |

Hodgkin's lymphoma

Median onset 45y

Parenchymal disease

Associated with immunosuppressive states (EBV)

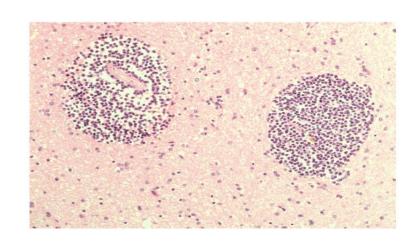
Incidentally Excision +RT -> 90% PFS at 28m (N=16)

CNS penetrating chemo -> ICE

Marginal Zone Lymphoma

Rarely true parenchymal, most of times leptomeningeal/dural disease

Frequently mistaken as meningioma


Remains an indolent disease

Treatment:

Can you wait?

RT most frequently used

High rates of response and long remission

Mantle Cell lymphoma

Typically relapse disease (Median time from diagnosis >12m)

IBR and AraC have CNS activity

Blastoid, high LDH, B-symptoms

R-HyperCVAD; HDMTX/AraC; HR 0.42 for TT based ASCT (N=57; Cheah et al, Ann Oncol, 2013)

Role of BTKi is promising, CNS activity is widely recognised (Rusconi et all, Blood, 2022)

N=29 in both IBR and CIT group. CNS involvement at relapse PFS 13 vs 3m; OS 17 vs 4m

Follicular Lymphoma

Never assume low grade disease – biopsy

True FL has frequent dural involvement

Treatment

RCHOP-like/HD-MTX alternating regimens

Bendamustine-based regimens

Rituximab-Lenalidomide

66% 5-year OS (N=4000, Chihara et al, Oncotarget, 2018).

Waldenstrom's

Bing-neel syndrome: Clonal LPL cells in tissue biopsy or CSF

Typically diffuse infiltration (brain/meninges), less common as mass

Treatment (71% OS at 5 years, 70% ORR)

Simon et al, Haematologica 2015.

HD-MTX based treatment

Bendamustine

ASCT 13/14 long term remission (Simon et al Am J Hematol, 2019)

Ibrutinib (N=28, 2-year EFS 80% - Castillo et al, BJH, 2019)

CNS lymphoma: future pospects

- Optimisation of current therapies (Early efficacy/Toxicity)
- Novel agents: Comprehensive understanding of disease biology
- Minimally invasive diagnosis (ctDNA)
- Application of advanced imaging technologies to measure disease response, detect early relapse.
- CAR-T therapy

Acknowledgements

UK PCNSL working group

Dr Kate Cwynarski Dr Jessica Okosun Dr Christopher Fox

Dr Steffi Thust Prof Dorothee Auer

University of Birmingham CRCTU University of Southampton CTU

International Colaborators

Prof Andres Ferreri (Milan)
Prof Gerald Illerhaus (Stuttgart)
Dr Elisabeth Schorb (Freibrug)
Dr Benjamin Kasenda (Basel)

Thank you for your attention

